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Abstract

Object detection and recognition in images and
videos captured by body-mounted cameras are a
significant underlying problem in many systems
such as health monitoring, kitchen assistance, etc.
In this paper, we propose a novel solution to the
inherent distortion in these images in the form
of spatial transformer networks (STN). We argue
that the power of STNs arising from their ability
to model any transformed grid, affine or other-
wise, combined with the ability of convolutional
neural networks to recognize local featues, makes
them well-suited to attend to the important ob-
jects in an egocentric image, regardless of the
clutter surrounding it. We extensively evaluate
our proposed method on two popular datasets -
the Georgia Tech Egocentric Activities (GTEA)
data, and the Intel Egocentric Vision data. All
the results clearly demonstrate that our proposed
method achieves better performance than bench-
line models and is significantly close to complex
state-of-the-art methods.

1. Introduction

In recent years, advances in camera technology
and storage have made it possible to capture high-
resolution images and videos using pocket-sized

devices, and store large amounts of such data for
processing afterwards. With such an advance-
ment, computer vision has found increased appli-
cability in domains such as elderly health mon-
itoring, live assistance (e.g. kitchen assistance)
systems, among others through the use of body-
mounted or head-mounted cameras.

In conventional object recognition tasks, im-
ages are usually captured from a static camera in
a brightly illuminated environment [6, 20]. How-
ever, in an egocentric setting, such an assumption
is invalid because the camera is mounted on a mo-
bile subject. Due to this instability and low illu-
mination, objects in the image may appear out of
focus. Further, due to the presence of multiple
smaller objects in the subject’s field of view, de-
tecting local features may be extremely difficult.

For this reason, most of the existing methods
which demonstrate high recognition rate with nor-
mal images fail miserably with egocentric im-
ages [22]. For instance, the recognition accuracy
of SIFT matching [19] and latent HOG methods
[4, 7] for handheld objects was found to be 33%
and 64%, respectively.

In the last decade, deep learning methods such
as convolutional neural networks (CNN) [15]
have proven to be extremely efficient for vi-
sion problems since they exploit the locality of
reference that is common with image data sets
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[1, 10, 25]. CNNs usually have multiple layers
of convolution with a max pooling layer, which
provides some spatial invariance in the form of
translational variability.

However, the spatial invariance provided by
CNNs is limited in scope, since it takes into ac-
count only translational variations [3, 18]. If
the image contains scaled, rotated, or spline-
transformed objects, the convolution layers may
require a large number of epochs to converge
during backpropagation. This limitation has
been explored by various researchers, and hence
there have been various approaches for modelling
transformations with neural networks. These in-
clude a generative model which can learn to gen-
erate transformed images of objects by compos-
ing parts [9, 28], constructing filter banks of trans-
formed networks [12, 26], and neural networks
with selective attention [1, 24].

In the seminal work by Jaderberg et al. [11], a
novel method called the spatial transformer net-
work (STN) has been proposed to alleviate the
issue of transform invariance. This is a differ-
entiable module which applies a spatial transfor-
mation to a feature map during a single forward
pass, where the transformation is conditioned on
the particular input, producing a single output fea-
ture map. The fundamental usefulness of STNs
lies in the fact that they provide abstraction from
the other layers in deep models. For instance,
these networks can be plugged in between any
two layers of a fully-connected network (FCN),
or a CNN. They can also be initialized indepen-
dently for different channels of the input. Fur-
ther, multiple layers of STN may be used within
any network. Apart from transforming images to
increase classification accuracy, STNs may also
be used for tasks that require an attention mecha-
nism, and training them is achievable purely with
backpropagation.

In addition to integrating them with FCNs and
CNNs, these transformers have also been imple-
mented with various recurrent networks [27]. The
advantage of using an RNN-STN is that it can at-

tend to individual elements in a sequence, while
keeping the training simplicity that is salient in
other STN architectures. Most of the models have
been tested using the MNIST handwritten charac-
ter data set, and some have also been employed
on other popular data sets such as “street view
house number” [21] and “fine-grained bird clas-
sification” [29].

In this work, we propose a novel application
of STNs in the form of egocentric object recog-
nition. Due to the inherent distortion present in
egocentric images, they are well-suited for the
transform-detect appraoch leveraged by STNs,
and hence we argue that such a model may attend
instinctively to the important objects in the im-
age, without being distracted by background clut-
ter. Our key contributions in this paper are as fol-
lows:

• We propose a new and natural domain of ap-
plication for spatial transformer networks in
the form of egocentric object recognition.

• We validate our arguments on 2 popular
datasets, namely the Georgia Tech Egocen-
tric Activities (GTEA) data, and the Intel
Egocentric Vision (IEV) data.

• Our simple CNN-based model performs
extremely well compared to existing ap-
praoches that leverage complex feature en-
gineering based on domain knowledge.

The remainder of the paper is organized as fol-
lows. In Section 2, we discuss existing empir-
ical and deep learning approaches for egocen-
tric object recognition. Section 3 then provides
an overview of the egocentric object recognition
problem and the STN architecture as described in
[11]. We proposed our method for this problem
in Section 4 and describe our data sets and ex-
periments in Section 5. We conlude by provid-
ing possible explanations for these results and hy-
pothesize further improvements in Section 6.
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2. Related research

Most of the existing methods for object recog-
nition rely upon videos captured from the egocen-
tric perspective and complex computational vi-
sion algorithms for feature extraction. Because of
the use of videos rather than images, the task of
background subtraction [16, 2] is simplified since
a mobile object can be easily distinguished from
a static background.

In [22], the authors perform background sub-
traction by computing dense optical flow and fit-
ting it into multiple affine layers. A max-margin
classifier is then used to combine motion with em-
pirical knowledge of object location and back-
ground movement as well as temporal cues of
support region and color appearance.

Color and depth information has also been ex-
ploited for hand and object tracking through the
use of Kinect-style cameras [17]. For object
recognition, the authors used RGB-D kernels in
conjugation with linear SVM classifiers. Further,
[5] used a robust, unsupervised bottom-up seg-
mentation method which exploits the structure of
the egocentric domain to partition each frame into
hand, object, and background categories.

Surprisingly, deep learning methods have
failed to keep up with empirical methods in this
particular problem. Although fine-grained ibject
detection and semantic segmentation have been
solved efficiently using convolutional neural net-
works [13, 8], distorted object recognition is a
task which has not yet seen much success [14].

In this paper, we propose a method which is in-
dependent of empirical, domain-specific knowl-
edge, but which demonstrates a commendable
performance on egocentric images. In this regard,
our method is comparable with the simplest deep
learning models in terms of complexity, and yet
the recognition rate is at par with approaches that
involve a significant amount of feature engineer-
ing.

Figure 1. The architecture of a spatial transformer
module. Source: [11]

3. Background
3.1. Egocentric object recognition

Object recognition is a process for identify-
ing a specific object in a digital image or video.
Object recognition algorithms rely on match-
ing, learning, or pattern recognition algorithms
using appearance-based or feature-based tech-
niques. The term “egocentric” refers to any image
or video captured from a first-person perspective,
i.e., from a hand-held or body-mounted camera.
Hence, egocentric object recognition is the task
of identifying objects in such first-person images.

3.2. Spatial transformer networks (STN)

The spatial transformer mechanism consists of
three modules as shown in Fig 1.

1. Localisation network: It takes the feature
map as input and outputs the parameters of
the spatial transformation that should be ap-
plied to it.

2. Grid generator: It uses the predicted trans-
formation parameters to create a sampling
grid, which is a set of points where the in-
put feature map should be sampled to obtain
the transformed image.

3. Sampler: It generates the image from the in-
put feature map and the sampling grid.

The class of transformations τθ may contain
different number of parameters, such as six in
affine, eight in plane projective, piece-wise affine,
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or thin-plate spline. Further, the sampling kernel
used in the sampler may be selected from a large
number of available choices, such as an integer or
a bilinear sampling kernel.

Jaderberg et al. use bilinear sampling for the
STN in a CNN model consisting of two max-
pooling layers. The model is trained using back-
propagation with stochastic gradient descent, with
three weight layers in the classification network.

4. Proposed method

In this section, we describe our CNN-STN
model for egocentric object recognition in detail.
For this purpose, suppose our input feature map
is U ∈ RH×W×C , where H and W are the height
and width of the image, respectively, and C is the
number of input channels. In the case of an RGB
image, this value will be equal to 3. Fig. 2 shows
an outline of our proposed method.

4.1. Localization network

This layer takes U as input and outputs θ, the
parameters of the transformation τθ to be applied
to the feature map. The size of θ varies accord-
ing to the type of transformation performed. For
instance, θ is equal to 6 in the case of an affine
transformation.

Although a localization network can internally
take any form such as a fully-connected or a con-
volutional network, we use the latter in our model
to have shared weights so that the model learns
and converges faster. It consists of a final regres-
sion layer to produce the transformation parame-
ter θ.

4.2. Grid generator

This module takes the transformation parame-
ter θ and a regular grid G as input and outputs a
transformed grid, i.e. τθ(G). The transformation
is performed such that the new grid naturally at-
tends to the object to be recognized, as shown in
Fig. 3.

Figure 3. Two examples of applying the parameterised
sampling grid to an image U producing the output V .
Source: [11]

4.3. Sampler

It takes a set of sampling points τθ(G), along
with the input feature map U , and produces the
sampled output feature map V .

Each (xs
i ,y

s
i ) coordinate in τθ(G) defines the

spatial location in the input where a sampling ker-
nel is applied to get the value at a particular pixel
in the output V . This can be written as

V c
i =

H∑
n

W∑
m

U c
nmk(x

s
i −m; Φx)k(y

s
i − n; Φy)

∀i ∈ [1 . . . H ′W ′]∀c ∈ [1 . . . C]

(1)

where Φx and Φy are the parameters of a generic
sampling kernel k() which defines the image in-
terpolation (e.g. bilinear), U c

nm is the value at lo-
cation (n,m) in channel c of the input, and V c

i is
the output value for pixel i at location (xt

i,y
t
i) in

channel c. For sampling, any kernel such as an
integer kerner or a bilinear sampling karnel may
be used. In our model, we use bilinear interpola-
tion for this purpose.

4.4. Convolutional layer

Once we have obtained the transformed image
from the STN module, we perform a simple ob-
ject classification task using a convolutional net-
work. The convolutional layer identifies local fea-
tures in an image such as edges, basic polygon
shapes and boundaries. If we use m kernels of
size k × k, the nonlinear output generated by one
of these m kernels is given as
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Figure 2. Our proposed CNN-STN architecture for egocentric object recognition.

ylij = σ(
m∑
a

m∑
b

ωaby
l−1
(i+a)(j+b)) (2)

4.5. Max pooling

After the convolutional layer, we apply a max-
pooling layer to obtain global features from the
image. In addition to extracting global features,
this layer also reduces the dimensions of the im-
age, thus ensuring that we have lesser number of
weights to train.

4.6. Fully-connected layer

The fully-connected layer contains as many
nodes as the number of object categories, and it
outputs a score corresponding to each of these
classes.

4.7. Softmax layer

We apply a softmax layer to obtain a probabil-
ity distribution from the category scores provided
by the fully connected layer using the equation

σ(z)j =
ezj∑K
k=1 ezk

∀j = 1, . . . , k. (3)

where z is a K-dimensional vector representing
the final probability distribution.

5. Experimental results
5.1. Description of datasets

We perform our experiments on two different
datasets as described below.

5.1.1 Georgia Tech Egocentric Activities
(GTEA) dataset [5]

This dataset contains 7 types of daily activities,
each performed by 4 different subjects. The cam-
era is mounted on a cap worn by the subject. For
our experiments, we removed the frames contain-
ing no objects, and also scaled the images down
from 720x405 to 20% proportions. We were ulti-
mately left with 3047 images and 7 classes. The
final count of instances corresponding to each ob-
ject class is shown in Table 1.

Table 1. Description of GTEA dataset

Object class No. of instances

Cheese 246
Chocolate 357

Coffee 393
Honey 324
Hotdog 168
Peanut 699

Tea 860

5.1.2 Intel Egocentric Vision (IEV) dataset
[23]

This is a dataset for the recognition of handled
objects using a wearable camera, collected by
Matthai Philipose and Xiaofeng Ren at Intel Re-
search Seattle. It includes ten video sequences
from two human subjects manipulating 42 ev-
eryday objects. It contains 100,000+ frames,
of which approximately 30% are background
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Figure 4. Validation accuracy at different time in-
stances for the GTEA dataset classification using a
CNN-STN model vs a simple CNN model.

frames, i.e., do not contain any object. We again
removed these background frames for our evalu-
ation purpose, and scale the images to 20% pro-
portions to reduce the number of parameters.

5.2. Results on GTEA dataset

Since no formal train-test split was available,
we randomly selected 80% of the images for
training and the rest of the images were used
for testing. The validation accuracy at different
epochs for the STN model compared to a simple
CNN model is shown in Fig. 4.

From the figure, we can observe that although
initially our model learns slowly due to the pres-
ence of a larger number of parameters, it ulti-
mately performs almost 2-3% better than a simple
CNN model in the object classification task.

To understand the transformations made by the
STN module, we observe its output at various
time instances, such as epochs 15, 70, and 145,
and the corresponding outputs are shown in Fig.
5. It is evident from these images that the STN
module accurately focuses on the handheld object
and avoids getting distracted by the background
clutter. Due to this transformation, the CNN mod-
ule which comes after the STN is able to recog-
nize the object easily.

Figure 5. GTEA dataset classification using a CNN-
STN model (Output at epochs 15, 70 and 145).

Figure 6. GTEA dataset object recognition results us-
ing [5]. Blue bars show how well the highest score
detection in each frame matches the ground-truth ob-
ject label. Green and red bars, depict these results for
any of the 2 and 3 highest score detections.

Fig. 6 shows the results obtained for object
recognition on the GTEA dataset using [5]. From
these results, it is obvious that this appraoch was
only able to recognize around 2-3 of the 7 ob-
jects to a satisfactory accuracy, and the average
accuracy for the best of these models is less than
80%. Hence our CNN-STN model outperforms
this benchline model by a large margin.
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5.3. Results on IEV dataset

Although the model performed well on the
GTEA dataset, its performance on the IEV data
was miserable. Even after 100 iterations over the
entire training set, the model could only recog-
nize the objects with around 20% accuracy. We
attribute this failure to the following reasons:

1. While the GTEA is a small dataset (only
3000 samples) with 7 simple classes, IEV
consists of 70000 images categorized into 42
types. Our simple CNN-STN with 1 STN
module, 1 convolutional layer, and 1 pool-
ing layer may not have sufficient number of
parameters to model such a large dataset ef-
ficiently.

2. Results may also be affected due to the
downsampling of the images owing to re-
source constraints. We believe that an STN
can better transform the image if provided in
its original form.

3. Some improvement in performance may also
be obtained by tuning the hyperparameters
using a method such as grid-search.

6. Conclusion and future work
In this endeavor, we proposed an STN-based

CNN model for object recognition in egocentric
images. From the results obtained on the GTEA
dataset, we validated our claim that an STN can
efficiently model the distortions present in an ego-
centric image because of the natural mobility and
low illumination in such images. Although the
results with the larger IEV dataset were unsatis-
factory, we argued that these could be improved
by considering a more complex STN model such
as that used for Street View House Number recog-
nition in [11].

From existing appraoches for egocentric ob-
ject recognition, it may be observed that domain-
specific knowledge improves results drastically in
most models [22]. For our proposed model, a

simple background subtraction module appended
before the STN may be hypothesized to improve
recognition rate, since the STN would then only
have to perform affine transformations without
the need to first attend to one of many objects
present in the first-person perspective. Such an
argument presents the need to integrate domain-
specific knowledge and some vision methods (e.g.
segmentation) into the CNN-STN model that has
been proposed in this paper.
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