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Convolutional Neural Networks in
Vision
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convolutional neural networks in vision

CNNs have been extensively used in computer vision applications
such as:

∙ Object detection
∙ Image classification
∙ Semantic segmentation

Have outperformed state-of-the-art learning methods for these
tasks.

2



convolutional neural networks in vision

Multiple convolutional layers with local max-pooling layers allows
some translational invariance.

However, what should be done for highly distorted inputs?
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convolutional neural networks in vision

Figure: Distorted MNIST handwritten character data set.
(http://www.vlfeat.org/matconvnet/spatial-transformer/)
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convolutional neural networks in vision

∙ Pooling is simplistic

∙ Small invariances per pooling layer
∙ Limited spatial transformation
∙ Limited spatial invariance provided by CNN!
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Conditional Spatial Warping
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conditional spatial warping

Conditional on input feature map, spatially warp the data.

∙ Transforms data into a space expected by subsequent layers

∙ Select regions of attention
∙ Invariant to more classes of transforms
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conditional spatial warping

Figure: Transforming the attention grid. (Jaderberg, Max, et al. ”Spatial
Transformer Networks.” arXiv preprint arXiv:1506.02025)
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Spatial Transformer Network
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spatial transformer network

∙ Introduced by Jaderberg et al. (researchers at Google DeepMind)
at NIPS 2015.

∙ A completely independent module that can be plugged into any
existing network.

∙ Various classes of transforms may be applied to input image to
feed into further layers.

∙ Learns using backpropagation, without explicit supervision.
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spatial transformer network

Figure: Architecture of an STN (Jaderberg, Max, et al. ”Spatial Transformer
Networks.” arXiv preprint arXiv:1506.02025)
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spatial transformer network

Localisation network Learns transformation parameter θ using the
input feature map U.

Grid generator Produces a sampling grid from the regular grid G and
the transformation matrix τθ .

Sampler Produces the output image from the input image and
sampling grid.
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spatial transformer network

Figure: MNIST handwritten character recognition using a CNN-STN model
(Jaderberg, Max, et al. ”Spatial Transformer Networks.” arXiv preprint

arXiv:1506.02025)
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Variations to STN: a Recurrent Model
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variations to stn: a recurrent model

∙ Proposed by Sønderby et al. (University of Copenhagen,
Denmark).

∙ Uses a simple RNN in the localisation network instead of CNN
as proposed in the first paper.

15



variations to stn: a recurrent model

∙ Proposed by Sønderby et al. (University of Copenhagen,
Denmark).

∙ Uses a simple RNN in the localisation network instead of CNN as
proposed in the first paper.

15



variations to stn: a recurrent model

Figure: Architecture of the RNN-STN.
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Proposed Improvements
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proposed improvements

∙ Extend recurrence to the entire STN module instead of just the
localisation network.

∙ Allows multiple glimpses over the input image.
∙ Current glimpse is used as input to the RNN for the next
iteration.

∙ Expected to improve classification accuracy, especially with
images containing multiple digits.
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Thank You
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