OBJECT ORIENTED
PROGRAMMING

T

WHY OOP ¢

CLASSES

OLNSGIN

///;:;-llII-":_______________::“'-Illlllii::!

AN EXAMPLE

|c1355 smallobj { //define a class
private:

int somedata;

public:
void setdata(int d) { //member function to set data
somedata = d;
¥
void showdata() { //member function to display data
cout << "Data is “ << somedata << endl;
¥

¥;

void main() {

smallobj s1, s2; //define two objects of class smallobj
s1.setdata(1066);

s2.setdata(1776); //call member function to set data
s1.showdata();

s2.showdata();

DATA-HI

e Dafta and functions are

directly accessible only
from within the class
defining them.

e Data and functions are
directly accessible
globally.

—

CONSTRUCTORS

« Member functions that are called automatically when
an object is instantiated

 Posses the same name as that of the class and don't
have a return type

smallobj(int init){ // Constructor

cout << °© Initialized to "<<init << endl;
somedata=init;

—

DESTRUCTORS

« Parameterless member functions that are called
automatically when an object is erased or it goes out
of scope

« Starts with a tilde “~" followed by the class name

» Used for cleanup like deallocating dynamic memory,
closing opened files, network connections efc.

~smallobj(){ // Destructor

cout << " Initialization undone " << endl;

—

COMMON TRAITS OF
OOP LANGUAGES

»Encapsulation
»|nheritance
»Polymorphism

T

ENCAPSULATION

»Encapsulation is the first defining characteristic of the
object model.

»Objects and encapsulation are synonymous.

»Seals attributes and behaviors together into a single
unit.

T

STATIC

« How is memory allocated for objecte
« Are objects kind enough to share¢ YES!

F‘

STATIC

* Do they really share?
« Does they belong to class or objectse
* |If belong to class then how can we call?

F‘

STATIC

« Are only data member static?

« Can it access other variablese Because NO OBJECTS
REQUIREDI!!!

—a ~

CONSTANT

« How to protect from modifying any data member?
» Declare all of them constant! — Tedious
« What if you want to change but not always?

« Const member functions
« Const data members
« Const objects

——uS

'CONST' TEST

« char* p = “Hello”;

« char pl[] = “Hello”;

« const char* p = “Hello”;

« char* const p = “Hello”;

« char const *p = “Hello”;

« const char* const p = “Hello”;

« Apply operations:
s P = p+'|;
° p — HByeH;

« *p= ‘M

INHERITANCE

< Ability to define new classes of objects using existing classes as
a basis

s The new class inherits the attributes and behaviors of the
parent classes

= New classis a
specialized version
of the parent class

Mountain

INHERITANCE

< A natural way to reuse code (implements Code Reusability)
= Programming by extension rather than reinvention
= Object-oriented paradigm is well-suited for this style of
programming
< Terminology
= Base class (superclass)
= Derived class (subclass)

Mountain

———

POLYMORPHISM

»Selection of the correct method is deferred until run-
time
»when the selection is based on the current object

» Early binding: Func to call known at compile time
» Late binding: Func to call known at run time

»Objects respond differently to the same message

F‘

THANK YOU

 This covers the basic concepts of OOP

* Next class :
* Inheritance
* Friend
* Virtual
 Mutable

